Physics Numbers (what every physicist should know)

Sizes

atom: 0.2 - 0.3 nm = 2 - 3 angstromsnucleus: $\approx 10 \text{ fm} = 10^{-14} \text{ m}$ wavelength of visible light: 400 nm to 700 nm = 0.4 to 0.7 µm earth: radius $\approx 6000 \text{ km}$

Energies

 $\begin{array}{l} 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \\ 1 \text{ cal} = 4.184 \text{ J} \\ \text{chemical bond} \approx 1 \text{ eV or less} \\ \text{nuclear bond} \approx 1 \text{ MeV} \\ \text{room temperature: } \text{kT}_{\text{room}} = 0.025 \text{ eV} \\ \text{visible photon: } 2 \text{ to } 3 \text{ eV} \\ \text{solar constant (solar power per square meter striking Earth) } 1000 \text{ W/m}^2 \end{array}$

Masses

electron = 9.1×10^{-31} kg = 0.511 MeV/c² proton = 1.67×10^{-27} kg = 938 MeV m_{proton} ≈ 1800 m_{electron}

Densities

water: $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$ (cubic meter of water is a metric ton) air: $\approx 10^{-3}$ water elements: $2-20 \text{ g/cm}^3$

Speeds

sound (in air) ≈ 340 m/s (1 mile per 5 seconds) light: 3.0×10^8 m/s

Pressure

sea-level air: 14.7 psi $\approx 1.0 \times 10^5$ Pa

 $(1 \text{ Pa} = 1 \text{ N/m}^2)$

Money $1 \text{ kW br } \sim \$ 0.1$

 $1 \text{ kW-hr} \approx \$ 0.10 = 10 \text{ cents}$

Constants (SI units)

 $\begin{aligned} k_{\rm B} &= 1.38 \times 10^{-23} & N_{\rm A} &= 6.0 \times 10^{23} \\ e &= 1.6 \times 10^{-19} & h &= 6.6 \times 10^{-34} \\ G &= 6.7 \times 10^{-11} & \varepsilon_{\rm o} &= 8.9 \times 10^{-12} \end{aligned} (\hbar \approx 1 \times 10^{-34})$